I previously reported on a team of cancer scientists doing some research on how to stop cancer by starving them. It looks like they're not alone in this approach, as another team of Belgium scientists are trying something similar, though in a much different way:


--------------------------------------------------

Preventing Tumor Cells From Refueling: A New Anti-cancer Approach?

ScienceDaily (Nov. 24, 2008) — New data, generated in mice, by Pierre Sonveaux and colleagues, at Université catholique de Louvain, Belgium, have identified a potential new target for anticancer therapeutics.

Not all cells in a tumor are equal, for example, some are in regions rich in oxygen, whereas others are in regions deprived of oxygen (hypoxic regions). It had been thought that the tumor cells in these two regions used the same type of fuel to generate energy, specifically glucose.

However, Sonveaux and colleagues have now shown that although hypoxic tumor cells use glucose to generate energy, well-oxygenated tumor cells use a different fuel, lactate. Further, the lactate used by the well-oxygenated tumor cells as a fuel was released from the hypoxic tumor cells as a waste product of the chemical reactions that burned glucose to generate energy, leading the authors to suggest that the different tumor cells exist in symbiosis.

More detailed analysis revealed that well-oxygenated cells took up lactate via the protein MCT1 and that inhibiting MCT1 made the well-oxygenated cells switch to using glucose as a fuel to generate energy. This disrupted the symbiotic relationship between the hypoxic and well-oxygenated tumor cells and in two mouse models of cancer led to decreased tumor growth, as the hypoxic tumor cells became deprived of glucose, and rendered the remaining cells sensitive to irradiation.

As MCT1 expression was detected exclusively in nonhypoxic regions of human cancer biopsy samples, the authors suggest that MCT1 is a potential new target for anticancer therapeutics.

In an accompanying commentary, Greg Semenza, at Johns Hopkins University School of Medicine, Baltimore, discusses this concept further as well as other therapeutic implications.

Results were presented at the American Association for Cancer Research's Seventh Annual International Conference on Frontiers in Cancer Prevention Research.

According to the Centers for Disease Control and Prevention, more people die from lung cancer than any other cancer type. In fact, according to 2004 data, more people died from lung cancer than breast, prostate and colon cancers combined.

Smoking is the biggest risk factor for developing lung cancer, even after quitting for long periods of time. "More than 50 percent of newly diagnosed lung cancer patients are former smokers," said Emily A. Vucic, a graduate student at the British Columbia Cancer Research Centre, Vancouver, B.C. "Understanding why some former smokers develop lung cancer is clearly important to the development of early detection, prevention and treatment strategies."

The researchers studied how DNA methylation contributes to lung cancer development in former smokers. Methylation is an important event regulating gene expression during normal development. As we age and in cancer, proper patterns of DNA methylation become deregulated throwing off the tight control of gene activity that normally exists.

Using an endoscope, Vucic and colleagues collected bronchial epithelial cells, which are cells that line the lungs, from 16 former smokers. The participants quit smoking more than 10 years ago. Eight participants had surgical removal of non-small cell lung cancer; eight were disease free.

Their results showed differences in methylation levels in lung epithelial cells between former smokers with and without lung cancer.

"Alteration to DNA methylation might potentially explain why some former smokers sustain additional genetic damage resulting in lung cancer," Vucic said. "As methylation is a reversible DNA modification, this knowledge could prompt the development and application of chemopreventive agents and unique therapeutic strategies that target DNA methylation in these patients."

Exposure to cigarette smoke is a major culprit in disease development. "In addition to DNA sequence mutations, cigarette smoke also causes widespread errors in DNA marks, such as DNA methylation, used to regulate gene function and genome stability," Vucic said.

Cigarette smoke exposure has been shown to activate genes that promote cancer and deactivate genes that stop tumor growth, she said. "Studies examining tumors at all levels of DNA disruption will identify events involved in lung cancer development in former smokers."

The researchers are pursuing additional studies to confirm their initial results, Vucic said.

Source: ScienceDaily; http://www.sciencedaily.com/releases/2008/11/081120171319.htm

--------------------------------------------------


How many ways are there to starve something? Not enough, apparently, and as it applies to cancer cells, that's always a good thing.

W.


This entry was posted on Thursday, December 04, 2008 and is filed under . You can follow any responses to this entry through the RSS 2.0 feed. You can leave a response, or trackback from your own site.

0 comments: